www.a2zpapers.com

Exam. Code : 103202
 Subject Code : 1310

B.A./B.Sc. Semester-II

PHYSICS

Paper-B
(Vibration and Waves)
Time Allowed- 3 Hours]
[Maximum Marks-35
Note :- The questicn parer has five sections. Attempt all questions in Dection A and one question each from Sections-D, \therefore, D and E.

SECTICN-A

1. (a) A particle is executing ! in:rle harmonic motion with angular frequency, ω anª a.nplitude, a. Plot a graph between the velocity ε_{x}^{f} narticle and ωt.
(b) Give one practical application of Lissajo is figures.
(c) Define quality factor, Q of an oscihator.
(d) Find the resonant frequency of a LC sircuit containing $\mathrm{C}=1, \mu \mathrm{~F}$ and $\mathrm{L}=10 \mathrm{H}$.
(e) A mass stands on a platform, which vibrates simple harmonically in a vertical direction at a frequency of 5 Hz . Show that the mass loses contact with the platform when the displacement exceeds $10^{-2} \mathrm{~m}$.
(f) Plot graphs between phase angle ϕ, between displacement(x) and force(F) against angular frequency, ω of the driving force.
(g) A transverse mechanical wave propagates from one medium to another. Write down the expression for reflection coefficient of amplitude. $1 \times 7=7$

SECTION-B

2. (a) Fid the trajectory of a particle under the superposition of two perpendicular simple harmunic motion of time periods in the ratio $1: 2$.
(b) Consider a simple pendulum oscillating with angular frequency in and amplitude, A. Derive expressions for itis ki.atic and potential energies as functions of tine.
3. (a) A mass, M is connected vic a spring to fixed wall. If the spring constan ${ }^{+} \mathrm{s} \mathrm{s}, \mathrm{c}$ btain its equation of motion and solve it to get is: expression for velocity.
(b) A simple pendulum swings with a ciisplecement amplitude a. Find the different values of th: phase constant, φ for the solution, $\mathrm{x}=\mathrm{a} \cos (\omega \mathrm{t}+\varphi)$ if it is starting point from rest is (i) $x=a$ ari (ii) $\mathrm{x}=-\mathrm{a}$.

www.a2zpapers.com

SECTION-C

4. (a) Write down the equation of motion of heavily damped one dimensional oscillator NOT driven by any external force and obtain an expression for its displacement magnitude x as function of time.
(r$)$ A capacitance C with a charge q_{0} at $\mathrm{t}=0$ discharges th 1 ough a resistance, R. Use the voltage equation $\mathrm{q} / \mathrm{v}+\mathrm{IR}=0$ to show that relaxation time of this process is RC .3
5. (a) Define iugrithmic decrement, δ. 3
(b) The anguiar frequency, ω of the damped oscillator of mass, m ic given by :

$$
\omega^{2}=\frac{\mathrm{s}}{\mathrm{~m}}-\frac{\mathrm{s}^{2}}{4 \mathrm{~m}^{2}}=\omega_{0}^{2}-\frac{\mathrm{r}^{2}}{4 \mathrm{~m}^{2}}
$$

where s , is the spring con: tant and r is the damping coefficient.

If $\omega_{0}^{2}-\omega^{2}=10^{-6} \mathrm{w}_{0}^{2}$, then h ,vv that quality factor of this oscillator, $\mathrm{Q}=500$ and thr logarithmic decrement, $\delta=\pi / 500$.

SECTION-D

6. (a) Obtain and solve the equation of motio of a forced mechanical oscillator with damping. 4
(b) Plot graphs between phase angle, ϕ, between velocity (v) and force(F) against angular frequency, ω of the driving force.

www.a2zpapers.com

7. (a) Define normal coordinates and degrees of freedom.
(b) Consider two particles of equal mass, m coupled by a spring of stiffness, s . Write down the equation of motion of this system in terms of normal coordinates and solve it to obtain frequencies of itः normal modes.

SECTION-E

8. (a) Consider a string of length, l with fixed ends. Find the fre,tuencies, ω_{n} of its normal modes of transverse rbraiion and the vertical displacement $y_{n}(x, t)$ of the string in its $n^{\text {th }}$ mode.

4
(b) Define characten siic impedance of a string and explain how it detrn'ines the transmission coefficient of energy when a wave propagates from one medium to ancther.
9. (a) Sound waves are incicies ${ }^{t}$ in a water-ice interface. If the acoustic imped ${ }^{2} \approx \approx$ for water $=$ $1.43 \times 10^{6} \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ and for ice $=3.49 \times 10^{6} \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$. Show that 82.3% of the energy is sransmitted when the waves are incident normall; it the interface. 4
(b) Using graphs between, ω and k , explain th: conditions for normal dispersion, no dispersion and anomalous dispersion of waves propagating in a medium.

